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Abstract: This paper deals with an inverse problem of simultaneously determining the dispersion coefficients and
the space-dependent source magnitude in 2D advection dispersion equation with finite observations at the final
time. The forward problem is solved by using the alternating direction implicit (ADI) finite difference scheme,
and then the optimal perturbation algorithm with the regularization parameter chosen by a Sigmoid-type function
is introduced to solve the simultaneous inversion problem numerically. Numerical inversions are presented, and
several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good
approximations to the exact solutions demonstrating that the optimal perturbation algorithm with the Sigmoid-type
regularization parameter is efficient for the simultaneous inversion problem in 2D solute transportation.
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1 Introduction

In the process of solute transport and transformation
in the soils and groundwater, it is always involv-
ing some complicated physical and/or chemical re-
actions. By the mass conservation law, the process
can often be described by mathematical models of ad-
vection dispersion and/or reaction diffusion equations
with source/sink terms. In many cases for the solute
transport model, the dispersion/diffusion coefficient,
the source/sink term characteristics and other physical
quantities are often unknown and cannot be measured
easily. So, the method of inverse problem and param-
eter identification has had widely applications in the
research of soil and groundwater pollution. See, e.g.,
[1-16].

It is noticeable that most of the research works
are focused on the inverse problems of determining
one kind of parameter based on the model and some
additional information of the solution. If there are
more than one different kinds of parameters to be
identified by the model and some additional informa-
tion from the view point of numerics, which can be
called multi-parameters simultaneous inversion prob-
lem, there seem to have few studies not only in the 1D
model but also in the multi-dimensional cases. Ma-

har and Datta [8] studied an inverse problem for de-
termining the source term and the hydrologic parame-
ters simultaneously arising from the 2D groundwater
pollution by applying the optimization method, and
Rodrigues et al [17] ever considered an inverse prob-
lem of simultaneously identifying the diffusion coeffi-
cient and the source magnitude but in the 1D diffusion
equation by the conjugate gradient method with aids
of an adjoint problem.

In this paper, we will deal with a simultaneous
inversion problem for a solute transport in a homoge-
neous unit section Ω = (0, 1) × (0, 1) with final ob-
servations. Let T > 0, the model considered here is
the 2D advection dispersion equation given as [5, 18]

∂c

∂t
= DL

∂2c

∂x2
+DT

∂2c

∂y2
−v

∂c

∂x
+µ(t) f(x, y), (1)

for (x, y) ∈ Ω and 0 < t < T , where
c = c(x, y, t) is the solute concentration at time t, and
space point (x, y); DL > 0 is the longitudinal disper-
sion coefficient, and DT > 0 is the transverse disper-
sion coefficient; v > 0 is the average pore-water ve-
locity; µ(t) > 0 is the attenuation factor depending on
the time-variable; f(x, y) is the space-dependent con-
tinuous source/sink magnitude which reflecting some
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capabilities of solute dissolution, adsorption, and ion
transformation in the porous media.

For Eq.(1), what we want to do is to determine
the dispersion coefficients DL, DT and the source
magnitude function f(x, y) by utilizing the optimal
perturbation algorithm with the regularization param-
eter chosen as a Sigmoid-type function. The inver-
sion problem here for simultaneously identifying the
two dispersion coefficients and the space-dependent
source magnitude becomes severely ill-posed as com-
pared with the problems of determining one single un-
known. On one hand, the ordinary optimal pertur-
bation algorithm [19-22] has to be modified to suit
for the simultaneous inversion problem. On the other
hand, the inversion algorithm here could lose effec-
tiveness if still utilizing empirical choice method on
the regularization parameter as done in the previous
works [23-25]. Fortunately, sigmoid-type functions
are usually utilized to construct variable step-size al-
gorithm which can give a possible approach to suit-
able choice of the regularization parameter, and we
can see that if regularization parameter is taken as the
Sigmoid-type function depending on the number of
iterations, then it will continuously decrease and ap-
proach to zero by which an optimal regularization pa-
rameter can be determined, and then an optimal solu-
tion to the inverse problem is obtained.

Furthermore, three numerical examples are pre-
sented, and several factors having important influ-
ences on realization of the inversion algorithm are dis-
cussed, which are the additional data, the numerical
differential step, and the initial iteration, etc. In par-
ticular, we will investigate how many additional data
are needed to determine the multi-parameters from
the view point of optimality, which is few reported
in the literature to our knowledge. The inversion solu-
tions are in good agreements with the exact solutions
demonstrating that the optimal perturbation algorithm
with the Sigmoid-type regularization parameter is ef-
ficient for the simultaneous inversion problem arising
from the 2D solute transport phenomena.

The paper is organized as follows. In Section 2,
the Peaceman-Rachford ADI difference scheme for
solving the forward problem is introduced, and a nu-
merical testification is presented to support the dif-
ference scheme. In Section 3, the inverse problem
of simultaneously determining the dispersion coeffi-
cients and the space-dependent source magnitude is
formulated, and the modified optimal perturbation al-
gorithm with the Sigmoid-type regularization param-
eter is given. In Section 4, numerical inversions are
carried out, and the factors that having important in-
fluences on the inversion algorithm are discussed. Fi-
nally, several concluding remarks are given in Section
5.

2 The forward problem and the ADI
scheme

Consider numerical solution to Eq.(1) with the follow-
ing initial boundary value conditions

c(x, y, 0) = c0(x, y), (2)

and

c(0, y, t) = g0(y, t), c(1, y, t) = g1(y, t),
c(x, 0, t) = h0(x, t), c(x, 1, t) = h1(x, t),

(3)

where the functions c0(x, y), and g0(y, t), g1(y, t),
and h0(x, t), h1(x, t) are supposed to be continuous,
and satisfy data compatibilities.

If all the model parameters are known, includ-
ing the dispersion coefficients, the average velocity,
the source term and the initial boundary values func-
tions, the problem (1)-(3) is called the forward prob-
lem, which is just an ordinary determinate problem
of 2D parabolic partial differential equation. We give
the alternating direction implicit (ADI) finite differ-
ence scheme to solve the forward problem numeri-
cally [26, 27].

2.1 The ADI scheme

Denote the grid points in the space domain [0, 1] ×
[0, 1] as xi = ih and yj = jh, i, j = 0, 1, 2, · · · ,M
with the uniform space step size h = 1/M , and the
grid points in the time interval [0, T ] are labeled as
tn = n△t, n = 0, 1, 2, · · · , N , where the time step
size △t = T/N . The values of the functions c(x, y, t)
at the grid points are denoted as cni,j = c(xi, yj , tn).
The Peaceman-Rachford ADI difference scheme is
given as follows.

Firstly, introducing the intermediate layer tn+1/2

between tn and tn+1, and discretizing Eq.(1) at
(xi, yj , tn+1/2), and using central difference methods,
we have

∂2c
∂x2 |(xi,yj ,tn+1/2)

= 1
2h [c

n+1
i+1,j − 2cn+1

i,j + cn+1
i−1,j + cni+1,j

−2cni,j + cni−1,j ] +O(h2 + (△t)2),

(4)

and

∂2c
∂y2

|(xi,yj ,tn+1/2)

= 1
2h [c

n+1
i,j+1 − 2cn+1

i,j + cn+1
i,j−1 + cni,j+1

−2cni,j + cni,j−1] +O(h2 + (△t)2);

(5)

and for the first-order derivatives in Eq.(1), there are

∂c

∂t
|(xi,yj ,tn+1/2) =

1

△t
[cn+1
i,j −cni,j ]+O((△t)2), (6)
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and

∂c
∂x |(xi,yj ,tn+1/2)

= 1
4h [c

n+1
i+1,j − cn+1

i−1,j + cni+1,j − cni−1,j ]

+O(h2 + (△t)2).

(7)

Next, based on the above discretizing expressions (4)-
(7), denoting r = △t

h2 , the Crank-Nicolson scheme for
solving Eq.(1) is given as

(−vrh
4 − rDL

2 )cn+1
i−1,j + (1 + rDL)c

n+1
i,j

+(vrh4 − rDL
2 )cn+1

i+1,j

− rDT
2 cn+1

i,j−1 + rDT c
n+1
i,j − rDT

2 cn+1
i,j+1

= (vrh4 + rDL
2 )cni−1,j − rDLc

n
i,j

+( rDL
2 − vrh

4 )cni+1,j

+ rDT
2 cni,j−1 + (1− rDT )c

n
i,j +

rDT
2 cni,j+1

+△t fi,j µ
n+1/2,

(8)

where fi,j = f(xi, yj), and µn+1/2 = µ(tn+1/2).
It is noted that the above scheme is of high com-

putational complexity, and it requires much more ex-
tra computational labor. So we should seek for other
numerical schemes for the 2D advection dispersion
equation. The alternating direction implicit (ADI)
method is often utilized to modify the Crank-Nicolson
scheme in two-dimensional case. The idea of the ADI
method is to split the scheme (8) into two, one with
the x-derivative taken implicitly and the next with the
y-derivative taken implicitly by introducing the inter-
mediate layer tn+1/2 between tn and tn+1. According
to (8), from tn to tn+1/2, there is

(−vrh
4 − rDL

2 )c
n+1/2
i−1,j + (1 + rDL)c

n+1/2
i,j

+(vrh4 − rDL
2 )c

n+1/2
i+1,j

= rDT
2 cni,j−1 + (1− rDT )c

n
i,j +

rDT
2 cni,j+1

+△t
2 fi,j µ

n.

(9)

And from tn+1/2 to tn+1, there is

− rDT
2 cn+1

i,j−1 + (1 + rDT )c
n+1
i,j − rDT

2 cn+1
i,j+1

= ( rDL
2 + vrh

4 )c
n+1/2
i−1,j + (1− rDL)c

n+1/2
i,j

+( rDL
2 − vrh

4 )c
n+1/2
i+1,j + △t

2 fi,jµ
n+1.

(10)

The above system of the difference equations (9)
and (10) is called the ADI scheme for solving Eq.(1).
It is noticeable that both of the coefficient matri-
ces involving in the ADI scheme are symmetric and
tridiagonal, and the scheme can be typically solved
using tridiagonal matrix algorithm. Moreover, the
ADI scheme is of unconditional stability and second-
order convergence in time and space [27]. Next, we
will give a numerical testification to support the ADI
scheme.

2.2 Numerical test

Set the exact solution of the forward problem (1)-(3)
be c(x, y, t) = exp(−t)(x2 + y2), and the dispersion
coefficients DL = 1 and DT = 0.5, the average flow
velocity v = 1, and the attenuation factor µ(t) = e−t,
then the corresponding initial boundary value func-
tions are given as

c0(x, y) = x2 + y2; (11)

and

g0(y, t) = y2e−t, g1(y, t) = (1 + y2)e−t,
h0(x, t) = x2e−t, h1(x, t) = (1 + x2)e−t,

(12)

respectively, and the source magnitude function is ex-
pressed by

f(x, y) = −2(DL +DT ) + 2x− x2 − y2

= −3 + 2x− x2 − y2.
(13)

The solutions errors in the exact solution and the nu-
merical solution at T = 1 with various number of
grids are listed in Table 1, where M is the grids
number in space domain, and N is the grids num-
ber in time interval, and Errmax, Errrel denote the
maximum error and the relative error in the solu-
tions, which are defined by Errmax = ∥c(x, y, 1) −
c∗(x, y, 1)∥2, and Errrel = Errmax/∥c(x, y, 1)∥2,
respectively.

Table 1. The solution errors at T = 1 with grids number

M N Errmax Errrel
20 20 3.66484e-4 6.43209e-4
40 40 9.78912e-5 1.71914e-4
80 80 2.56767e-5 4.44603e-5

100 100 1.66357e-5 2.86494e-5
120 120 4.28650e-6 7.26107e-6

From Table 1, we can see that the solutions error
becomes small and small with the space-time mesh
refinement showing that the ADI scheme is of numer-
ical convergence, and the convergence order is about
O(h2 + (△t)2) with h = 1/M and △t = T/N .

3 The inverse problem and the inver-
sion algorithm

3.1 The inverse problem

Suppose that the dispersion coefficients DL and DT ,
and the space-dependent source magnitude f(x, y) in
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Eq.(1) are all unknown, and we have the final obser-
vations at t = T as the overposed condition given as

c(x, y, T ) = cT (x, y), (x, y) ∈ Ω, (14)

with which an inverse problem of simultaneously de-
termining the dispersion coefficients and the source
magnitude is formulated by Eq.(1), the initial bound-
ary value conditions (2)-(3) together with the addi-
tional condition (14).

Actually for real problems, what we can obtain
for the additional information is a finite number of the
measured data, given at (xl, yk) for l = 1, 2, · · · , L
and k = 1, 2, · · · ,K. Hence, the real additional data
for solving the inverse problem we can utilize are
given as

c(xl, yk, T ) = cl,k, (xl, yk) ∈ Ω,
l = 1, 2, · · · , L, k = 1, 2, · · · ,K.

(15)

As a result, from the view point of numerical iden-
tification, the simultaneous inversion problem here is
composed by the model (1)-(3) together with the real
additional condition (15).

3.2 The inversion algorithm

As we know, most of inversion algorithms are based
on regularization strategies so as to overcome ill-
posedness of the inverse problem, and different kinds
of inverse problems could need different approximate
methods on the basis of conditional well-posedness
analysis. The optimal perturbation algorithm has been
testified to be effective for determining one single un-
known in the diffusion equations [13, 14, 20, 23, 28,
29], however, we will still employe it to solve the
above simultaneous inversion problem with a little
modification to suit for the joint inversion problem
here.

Suppose that the dispersion coefficients
DL, DT ∈ IR+, and the source magnitude f(x, y) is
continuous on the space domain Ω, and Φ ⊂ C(Ω)
is an admissible set for the space-dependent source
function. A solution to the inverse problem can be
represented by < DL, DT , f(x, y) >∈ IR+×IR+×Φ.

Thus for any prescribed DL, DT ∈ IR+ and
f(x, y) ∈ Φ, the unique solution of the corresponding
forward problem, denoted by c(x, y, t;DL, DT , f),
can be solved by the ADI difference scheme (9)-
(10), and then we get the computational data
c(xl, yk, T ;DL, DT , g) for l = 1, 2, · · · , L and k =
1, 2, · · · ,K, which can be regarded as the output data
corresponding to the input f ∈ Φ and DL, DT ∈ IR+.
So, an optimal idea for solving the inverse problem
here is to minimize an error of the unknown function

between the output data and the additional data. The
inversion algorithm is stated as follows.

Suppose that {φs(x, y), s = 1, 2, · · · ,∞} is a
group of basis functions of Φ, and there has an ap-
proximate expansion given as:

f(x, y) ≈ fS(x, y) =
S∑

s=1

asφs(x, y), (16)

where fS(x, y) is the S-dimensional approximate so-
lution to f(x, y), and S ≥ 1 is the truncated level of
f(x, y), and as(s = 1, 2, · · · , S) is the expansion co-
efficient. It is convenient to set a limited dimensional
space as

ΦS = span{φ1, φ2, · · · , φS}, (17)

and a S-dimensional vector a = (a1, a2, · · · , aS) ∈
IRS . Therefore, to get an approximate solution <
DL, DT , f

S(x, y) >∈ IR+ × IR+ × ΦS is equivalent
to finding a vector (DL, DT ,a) ∈ IR+ × IR+ × IRS ,
in which meaning we can say that

(DL, DT ,a) =< DL, DT , f
S > .

In the follows, we will also utilize a =
(DL, DT , a1, · · · , aS) as an approximate solution to
the simultaneous inverse problem if there is no speci-
fication.

Based on the above discussions, denoting
c(x, y, t;a) = c(x, y, t;DL, DT , f

S) as the unique
solution of the forward problem for any admissible
source function fS(x, y) given by (16) and DL, DT ∈
IR+, and taking values at the measured points (xl, yk),
we get the computational data, denoted as a L × K-
dimensional vector

CLK
comp = (c(xl, yk, T ;a))

k=1,2,···,K
l=1,2,···,L .

Then, combining with the additional condition (15),
and denoting the observed data with a L × K-
dimensional vector given as

CLK
obs = (cl,k)

k=1,2,···,K
l=1,2,···,L ,

and a feasible way to solve the simultaneous inver-
sion problem numerically is to solve the minimization
problem with Tikhonov regularization:

min
a∈IR+×IR+×IRS

{∥CLK
comput −CLK

obs∥
2
2 + α∥a∥22},

(18)
where ∥ · ∥2 is the Euclid norm, and α > 0 is the
regularization parameter.

Now, for any given aj ∈ IR+ × IR+ × IRS , set

aj+1 = aj + δaj , j = 0, 1, · · · , (19)
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where δaj denotes a perturbation of aj for each j,
and j is the number of iterations. In the follows for
convenience of writing, aj and δaj are abbreviated as
a and δa, respectively.

Taking Taylor’s expansion for c(xl, yk, T ;a+δa)
at a, and ignoring higher-order terms, we have

c(xl, yk, T ;a+ δa) ≈ c(xl, yk, T ;a)
+∇T

ac(xl, yk, T ;a) · δa.
(20)

Denoting Ja = (∇T
ac(xl, yk, T ;a))L×K as Jacobi

matrix, and noting to (18), let us define an error func-
tional for the perturbation given as follows

F (δa) = ∥Ja · δa− (CLK
obs −CLK

comp)∥22 + α∥δa∥22.
(21)

For further computations, we also need to work out the
elements of the Jacobi matrix Ja. Utilizing ordinary
one-order forward difference, there is

∂c(xl, yk, T ;a)

∂as
≈ c(xl, yk, T ;a+ τes)− c(xl, yk, T ;a)

τ

for l = 1, 2, · · · , L, k = 1, 2, · · · ,K, and s =
1, 2, · · · , S+2, where τ > 0 is the numerical differen-
tial step, and es is basis vector of IRS+2. If denoting

blk,s =
c(xl,yk,T ;a+τes)−c(xl,yk,T ;a)

τ ,
B = (blk,s)LK×(S+2),

(22)

then the error functional (21) can be approximated to:

F (δa) = ∥B δa− (CLK
obs −CLK

comp)∥2 + α∥δa∥22.
(23)

It is not difficult to testify that minimizing (23) is
equivalent to solving the following normal equation
[30]:

(BTB + αI)δa = BT (CLK
obs −CLK

comp). (24)

and then an optimal perturbation, denoted by δaα, can
be worked out via

δaα = (αI+BTB)−1BT (CLK
obs −CLK

comp). (25)

Thus an optimal solution can be approximated by the
iteration procedure (19) as long as arriving at the given
number of iterations, or the perturbation satisfying the
prescribed convergent precision given as

∥δaα∥ ≤ eps, (26)

here eps is the given convergent precision.

3.3 The Sigmoid-type regularization param-
eter

The key points of performing the above inversion al-
gorithm lie in suitable choices of the approximate
space ΦS for the source magnitude function, the reg-
ularization parameter, the numerical differential step,
the initial iteration, and the convergent precision, etc.
Generally speaking, it is a trouble on how to choose an
optimal regularization parameter on realization of the
algorithm when using regularization strategy. Espe-
cially for the solving of the above simultaneous inver-
sion problem, the inversion algorithm could be failure
if still utilizing empirical choice method to the regu-
larization parameter due to severe ill-posedness of the
joint inversion problem. So, based on the properties
of Sigmoid-type functions [31, 32], the regularization
parameter here we will utilize on the implementation
of the inversion algorithm is given as

α = α(j) =
1

1 + exp(β(j − j0))
, (27)

where j is the number of iterations, and j0 is the prees-
timated number of iterations at which the regulariza-
tion parameter decreases to 0.5, and β > 0 is the
adjust parameter. Figure 1 gives some curves of the
above regularization parameter function depending on
the number of iterations for j0 = 3 and β = 0.5, re-
spectively.

From Figure 1, we can see that the regularization
parameter approaches to zero with the number of
iterations goes to large whatever for the given prees-
timated number of iterations, or for the given adjust
parameter. In the next section, numerical inversions
will be carried out to illustrate implementation of the
simultaneous inversion algorithm with the regulariza-
tion parameter given by (27). The detailed steps to
perform the above algorithm are given as follows.

Step 1. Give basis functions {φi(x, y)}Si=1, initial
iteration aj , numerical differentiation step τ , conver-
gent precision eps, and the additional data CLK

obs;

Step 2. Set a = aj , and solve the forward problem
with the ADI scheme (9)-(10) to get c(xl, yk, T ;aj)
and c(xl, yk, T ;a

j + τes), and then obtain the vector
CLK

comp and the matrix B = (blk,s) by (22);
Step 3. Choose the adjust parameter β and the prees-
timated iteration number j0 in (27) to determine the
regularization parameter, and work out an optimal per-
turbation via formula (25);
Step 4. If the number of iterations is satisfied, or the
stoping rule (26) is valid, then the algorithm is termi-
nated; otherwise, go to Step 2 by replacing aj with
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Figure 1: Regularization parameter with number of
iterations

aj+1 by (19) to go on.

4 Numerical inversions

We will choose polynomials as the basis functions,
i.e., there are

φ(x, y) = a1+a2x+a3y+a4xy+a5x
2+a6y

2+· · · ,
(28)

and we will employe lower-order polynomials space
as the approximate space on the concrete inversions.
For the numerical examples presented in this sec-
tion, we will utilize the quadratic polynomials space
Φ6 as the approximate space in Ex.1 and Ex.2, and
the cubic polynomials space Φ10 as the approximate

space in Ex.3, respectively. For instance, the un-
known source magnitude function f(x, y) in Φ6 =
span{1, x, y, xy, x2, y2} can be regarded as a =
(a1, · · · , a6) ∈ IR6 as utilized in Subsection 3.2. To-
gether with the two dispersion coefficients DL and
DT , the solution we are to determine is denoted as

a = (DL, DT , a1, · · · , a6) ∈ IR+× IR+× IR6. (29)

also as indicated in Subsection 3.2.
In the sequel, we will take the average flow veloc-

ity as v = 1, the time-dependent attenuation factor as
µ(t) = e−t, and the final time as T = 2, and we will
always set M = 20 and N = 20 in the computations
of the forward problem, and choose eps = 1e − 6 as
the convergent precision for the inversion algorithm if
there is no specification. In addition, all computations
are performed in a PC of Dell Studio.

4.1 Ex.1–Inversion for
f = −3 + 2x − x2 − y2 with
DL = 1, DT = 0.5

As given in Subsection 2.2, set the exact solution of
the forward problem be c(x, y, t) = e−t(x2+y2), and
the initial boundary value functions are given by (11)
and (12), respectively, and the exact dispersion coef-
ficients are DL = 1 and DT = 0.5, the exact source
magnitude is given by (13). Under the above assump-
tions, the forward problem is solved and the final ob-
servations at T = 2 are obtained, which are utilized as
the additional data by which the inversion algorithm is
applied to reconstruct the dispersion coefficients and
the source magnitude simultaneously. If dealing with
the source function in the quadratic polynomials space
Φ6, then the exact solution of the inverse problem in
this example is

aexa = (1, 0.5,−3, 2, 0, 0,−1,−1). (30)

On the concrete computations in this example,
we will choose the regularization parameter by (27),
where β = 0.5 and j0 = 3, and the initial iteration
as zero, i.e., a0 = 0, and the numerical differential
step as τ = 1e − 4. We will investigate several fac-
tors having influences on realization of the inversion
algorithm, which are the additional data, the initial it-
eration, and the differential step, respectively.

(a) Influence of the additional data on the inversion
algorithm

Choose some points on three lines (xl, y) for
xl = l/4 (l = 1, 2, 3) as the measured points, and
noting M = 20 in the computing of the forward
problem, so the real measured points are chosen as
(xl, yk) for xl = l/4, l = 1, 2, 3, and yk = k/20, k =
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0, 1, · · · , 20. For convenience of writing in the follow-
ing statement, we denote [c(xl, yk)] where l = 1, 2, 3
and k = 0, 1, · · · , 20 as a 3 × 21-dimensional vector
of the additional data along with the three measured
lines, and [c(1/4, yk)] where k = 0, 1, · · · , 20 as a
21-dimensional vector of the additional data along the
measured line of x = 1/4, etc. The inversion results
varying with different additional data are listed in Ta-
ble 2, where c(xl, yk, 2) denotes the additional infor-
mation given at T = 2, ainv denotes the inversion
solution, and Err = ∥ainv − aexa∥2/∥aexa∥2 is the
relative error in the solutions, and j is the number of
the iterations.

Furthermore, the exact and the inversion sources
at x = xl = l/4 (l = 1, 2, 3) are plotted in Figure 2,
respectively.
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Figure 2: The exact source and the inversion source in
Ex.1

From Table 2 and Figure 2, we can see that the
inversion solutions perfectly coincide with the exact
solutions, however, the choice of the additional data
are important to the realization of the inversion algo-
rithm. If choosing the additional data along one mea-
sured line, the inversion could always be failure, and
the inversion seems to be stable if choosing the addi-
tional data along more than one measured lines, and
the more of the additional data, the less of the number
of the iterations.

(b) Influence of the initial iterations on the inver-
sion algorithm

Suppose that the additional data are taken on the
three lines of (xl, y) for xl = l/4 (l = 1, 2, 3), also
noting to M = 20, here we will choose [c(xl, yk)]
for l = 1, 2, 3 and k = 0, 1, · · · , 20 as the additional
data to testify influence of the initial iterations on the

inversion algorithm. The inversion results are listed
in Table 3, where a0 denotes the initial iteration, and
ainv, Err, and j all denote the same meanings as in
Table 2.

From Table 3, we find that the choice of the initial
iterations has small influence on the inversion algo-
rithm, and the inversion solutions give good approx-
imations to the exact solutions with high-precision
even in the case of using zero vector as the initial iter-
ation.

(c) Influence of the numerical differential step on
the inversion algorithm

Also choosing the additional data on the three
lines of (xl, y) for xl = l/4 (l = 1, 2, 3), and the
initial iteration a0 = 0, the inversion results with dif-
ferent numerical differential steps are listed in Table 4,
where τ denotes the differential step, and ainv, Err,
and j also denote the same meanings as in the above.

From Table 4, we find that the inversion algorithm
can be performed smoothly for the differential step ly-
ing in [1e− 7, 1e− 2] except for τ = 1e− 3, and the
inversion solutions are also in good agreement with
the exact solutions.

4.2 Ex.2–Inversion for f = −1 + y − xy
with DL = DT = 1

In this subsection, set the exact solution of the forward
problem be c(x, y, t) = e−t(1 + xy), and take the
dispersion coefficients as DL = 1 and DT = 1, and
the initial boundary value functions are given as

c0(x, y) = 1 + xy, (31)

and

g0(y, t) = e−t, g1(y, t) = (1 + y)e−t,
h0(x, t) = e−t, h1(x, t) = (1 + x)e−t,

(32)

respectively. Under the above assumptions, the exact
source magnitude is given as

f(x, y) = −1 + y − xy, (33)

together with DL = DT = 1, the exact solution in the
case of f(x, y) ∈ Φ6 for the inverse problem here is
represented by

aexa = (1, 1,−1, 0, 1,−1, 0, 0). (34)

Based on the above inversion computations, we
will only perform the inversion algorithm with differ-
ent additional data in this example still utilizing the
Sigmoid-type regularization parameter given by (27),
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Table 2. The inversion results with additional data in Ex.1
c(xl, yk, 2) ainv Err j

[c(1/4, yk)] (1.0, 0.5, -3.0, 2.0, 1.9e-9, 4.0e-10, -1.0, -1.0) 1.72e-9 81
[c(2/4, yk)] failure
[c(3/4, yk)] failure

[c(1/4, yk), c(2/4, yk)] (1.0, 0.5, -3.0, 2.0, 6.4e-11, 7.1e-12, -1.0, -1.0) 2.94e-10 70
[c(1/4, yk), c(3/4, yk)] (1.0, 0.5, -3.0, 2.0, 3.8e-10, -2.2e-12, -1.0, -1.0) 9.87e-10 69
[c(2/4, yk), c(3/4, yk)] (1.0, 0.5, -3.0, 2.0, 2.4e-9, -1.5e-10, -1.0, -1.0) 6.14e-9 68

[c(xl, yk)] (1.0, 0.5, -3.0, 2.0, 3.9e-10, -1.2e-11, -1.0, -1.0) 5.32e-9 62

Table 3. The inversion results with initial iterations in Ex.1
a0 ainv Err j

(0, 0, 0, 0, 0, 0, 0, 0) (1.0, 0.5, -3.0, 2.0, 3.9e-10, -1.2e-11, -1.0, -1.0) 5.32e-9 62
(1, 1, 1, 1, 1, 1, 1, 1) (1.0, 0.5, -3.0, 2.0, -1.7e-10, 4.0e-12, -1.0, -1.0) 1.80e-9 63
(2, 2, 2, 2, 2, 2, 2, 2) (1.0, 0.5, -3.0, 2.0, 2.1e-10, -3.2e-12, -1.0, -1.0) 1.46e-9 64
(3, 3, 3, 3, 3, 3, 3, 3) (1.0, 0.5, -3.0, 2.0, -1.5e-13, -4.7e-14, -1.0, -1.0) 1.38e-11 68
(4, 4, 4, 4, 4, 4, 4, 4) (1.0, 0.5, -3.0, 2.0, -1.3e-12, -4.0e-14, -1.0, -1.0) 9.26e-12 69

where β = 0.5 and j0 = 3, and τ = 1e−4 and a0 = 0
as used in Ex.1. The inversion results are listed in Ta-
ble 5, where c(xl, yk, 2), ainv, Err, and j also de-
note the same meanings as in the above. Moreover,
the exact and the inversion sources at x = xl = l/4
(l = 1, 2, 3) are plotted in Figure 3, respectively.
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Figure 3: The exact source and the inversion source in
Ex.2

From Table 5 and Figure 3, we can find that the
inversion solutions perfectly coincide with the exact
solutions, and there is the same trend for the choice
of the additional data as that observed in Ex.1. The
inversion seems to become stable if choosing the ad-
ditional data along more than one measured lines. On

the other hand, if choosing suitable initial iterations,
the inversion can also be performed smoothly. For
instance, since the initial iteration is a0 = 0 in this
example, and the inversion is failure when utilizing
the additional data along two lines of x = 1/4 and
x = 3/4, however, the inversion can be realized if
choosing a0 = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2) as
the initial iteration, and the inversion error is Err =
4.9242e − 10, the number of iterations is j = 73.
In the next subsection, we will perform the inversion
algorithm on exponential continuous source function
which seems to be more complicated as compared
with those in Ex.1 and Ex.2.

4.3 Ex.3–Inversion for f = −3ex+y with
DL = 2, DT = 1

In this subsection, set the exact solution of the forward
problem be c(x, y, t) = ex+y−t, and take the disper-
sion coefficients as DL = 2 and DT = 1, and the
initial boundary value functions are given as

c0(x, y) = ex+y, (35)

and
g0(y, t) = ey−t, g1(y, t) = e1+y−t,
h0(x, t) = ex−t, h1(x, t) = ex+1−t,

(36)

respectively, and the exact source magnitude is given
as

f(x, y) = −3ex+y. (37)

Noting that

ex+y = 1+(x+y)+
(x+ y)2

2!
+
(x+ y)3

3!
+· · · , (38)
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Table 4. The inversion results with differential steps in Ex.1
τ ainv Err j

1e− 2 (1.0, 0.5, -3.0, 2.0, 3.6e-8, -8.9e-10, -1.0, -1.0) 4.04e-7 85
5e− 3 (1.0, 0.5, -3.0, 2.0, 4.3e-9, -5.4e-11, -1.0, -1.0) 2.46e-8 67
1e− 3 failure
1e− 4 (1.0, 0.5, -3.0, 2.0, 3.9e-10, -1.2e-11, -1.0, -1.0) 5.32e-9 62
1e− 5 (1.0, 0.5, -3.0, 2.0, 2.7e-10, -1.3e-11, -1.0, -1.0) 6.14e-9 62
1e− 6 (1.0, 0.5, -3.0, 2.0, 2.6e-10, -1.4e-11, -1.0, -1.0) 6.24e-9 62
1e− 7 (1.0, 0.5, -3.0, 2.0, 2.5e-10, -1.4e-11, -1.0, -1.0) 6.22e-9 62

Table 5. The inversion results with additional data in Ex.2
c(xl, yk, 2) ainv Err j

[c(1/4, yk)] failure
[c(2/4, yk)] failure
[c(3/4, yk)] failure

[c(1/4, yk), c(2/4, yk)] (1.0, 1.0, -1.0, 2.2e-12, 1.0, -1.0, 2.0e-11, 1.1e-11) 9.03e-9 74
[c(1/4, yk), c(3/4, yk)] failure
[c(2/4, yk), c(3/4, yk)] (1.0, 1.0, -1.0, -1.3e-11, 1.0, -1.0, 3.6e-11, 8.0e-11) 1.82e-8 71

[c(xl, yk)] (1.0, 1.0, -1.0, -2.9e-11, 1.0, -1.0, -2.5e-11, 1.6e-11) 2.55e-8 69

together with DL = 2, DT = 1, the exact solution of
the inverse problem here is represented by

aexa = (2, 1,−3,−3,−3,−3,
−1.5,−1.5,−1.5,−1.5,−0.5,−0.5),

(39)

for

f(x, y) ∈ Φ10 = span{1, x, y, xy, x2, y2, · · · , y3}.

The above inversion problem becomes severe ill-
posed as compared with those of Ex.1 and Ex.2. The
inversion algorithm is always failure if still utilizing
the same inversion parameters as used in the above,
and then the initial iteration and the Sigmoid-type reg-
ularization parameter have to be modified to suit for
the inversion. The regularization parameter is also
chosen by (27), but the adjust parameter is changed to
β = 0.8, and the pre-estimated number of iterations is
j0 = 5, the differential step also given as τ = 1e− 4,
the inversion results varying with various initial itera-
tions in the case of using the additional data in all of
the three lines are listed in Table 6, where a0 also de-
notes the initial iteration, and for convenience of writ-
ing, a0 = 0.2, a0 = 1 and so on here represent the
initial iteration vectors with equal component 0.2 and
1, respectively.

From Table 6 we can see that there still exists a
large range for the choice of the initial iterations, and
the inversion solutions perfectly coincide with the ex-
act solutions almost with the same precision and the
same number of iterations.

Next, let us perform the algorithm with different
additional data as done in Ex.1 and Ex.2. Choosing
the initial iteration as a0 = 0.5, and other inversion
parameters unchanged as used in the computations of
Table 6, the inversion results are listed in Table 7,
where c(xl, yk, 2), ainv, Err, and j also denote the
same meanings as used in the above. Moreover, the
exact and the inversion sources at x = xl = l/4
(l = 1, 2, 3) are plotted in Figure 4, respectively.
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Figure 4: The exact source and the inversion source in
Ex.3
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Table 6. The inversion results with initial iterations in Ex.3
a0 ainv Err j

0.2 (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 3.50e-8 47
0.5 (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 2.44e-8 47
1.0 (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 1.06e-9 48
2.0 (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 1.87e-9 48
4.0 (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 1.01e-8 47

Table 7. The inversion results with additional data in Ex.3
c(xl, yk, 2) ainv Err j

[c(1/4, yk)] failure
[c(2/4, yk)] failure
[c(3/4, yk)] failure

[c(1/4, yk), c(2/4, yk)] (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 1.34e-8 51
[c(1/4, yk), c(3/4, yk)] (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 1.32e-9 52
[c(2/4, yk), c(3/4, yk)] (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 3.28e-9 53

[c(xl, yk)] (2, 1, -3, -3, -3, -3, -1.5, -1.5, -1.5, -1.5, -0.5, -0.5) 2.44e-8 47

From Table 7, we find that the additional data
at least on two measured lines are needed to imple-
ment the inversion algorithm smoothly. From Figure
4 we can see that the inversions are not so good as
those presented in Figure 2 and Figure 3. The reason
comes from the truncated errors for the exact expo-
nential source function according to (38) and (39).

Furthermore, also choosing the inversion param-
eters as used in Table 7, we will continue to perform
the algorithm utilizing more additional data given at
the lines of xl (l = 1, 2, · · · , L) for L = 4, 5, · · · , 10
respectively. It is pleasure that all inversions can be re-
alized successfully, and the inversion solutions are all
in good agreement with the exact solution. The inver-
sion errors and the number of iterations correspond-
ing to different additional data are listed in Table 8,
where L is the number of measured lines, and [xl] here
denotes the measured line with which c(xl, yk, 2) for
k = 0, 1, · · · , 20 are chosen as the additional data, and
Err also denotes the relative error in the solutions, j
is the number of iterations, and Tcpu denotes the CPU
time (unit: second) for each inversion.

From Table 8, we can see that the inversion be-
comes stable if employing the additional data along
more than three lines, and the inversion solutions are
good approximations to the exact solutions with al-
most the same precision, and the required number of
iterations and the CPU time are reduced with the num-
ber of the measured lines increasing. However, the in-
version results can not have significant improvement
for L ≥ 7 showing that an optimal number for the
measured lines here should be L = 6.

5 Conclusion

We give several concluding remarks in this section.
(i) The optimal perturbation algorithm with the reg-
ularization parameter chosen by the Sigmoid-type
function depending on the number of iterations is suit-
able for the simultaneous inversion problem of de-
termining the dispersion coefficients and the space-
dependent source magnitude in 2D advection disper-
sion equation. The inversion gives good approxi-
mate solutions to the exact solutions for various space-
dependent source magnitude functions and dispersion
coefficients.
(ii) The choice on the regularization parameter is im-
portant to the implementation of the inversion algo-
rithm. The inversion algorithm can not be imple-
mented with traditional choice method to the regu-
larization parameter, however, it can be realized with
stability and adaptivity by the Sigmoid-type regular-
ization parameter given by (27). We also find that the
inversions are performed successfully for the source
function taking on polynomials if utilizing polynomi-
als space as the approximate space, and it becomes
complicated when taking the exponential function as
the exact source as presented in Ex. 3. More fine
regularization parameters should be needed to over-
come the ill-posedness of the simultaneous inversion
when performing the algorithm in high-dimensional
approximate spaces. Another possible approach is to
employe orthogonal polynomials space as the approx-
imate space in which the inversion could be expected
to get better results.
(iii) The choice of additional data is also important
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Table 8. The inversion results using more additional data in Ex.3
L [xl] Err j Tcpu

4 [1/10, 1/4, 1/2, 3/4] 1.61e-10 40 199.1
5 [1/20, 1/4, 1/2, 3/4, 8/9] 5.24e-10 39 193.7
6 [1/20, 1/10, 1/4, 1/2, 3/4, 8/9] 1.15e-10 39 194.0
7 [1/20, 1/10, 1/5, 1/4, 1/2, 3/4, 8/9] 7.73e-9 38 182.1
8 [1/20, 1/10, 1/5, 1/4, 1/2, 3/4, 4/5, 8/9] 5.66e-9 38 176.0
9 [1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10] 1.87e-9 38 176.9
10 [1/20, 3/20, 1/4, 7/20, 9/20, 11/20, 13/20, 3/4, 17/20, 19/20] 5.53e-10 38 176.1

to realization of the inversion algorithm especially for
inverse problems in multi-dimensional cases. There
are plenty of lines which can be chosen as the mea-
sured lines to get the additional data. The number
of the additional data can not be too few, otherwise
the inversion becomes failure, but the inversion seems
to have few improvement even though utilizing much
more additional data as observed in Ex.3. We will fo-
cus our attention on the utilization of orthogonal basis
functions, and on the choice of Sigmoid-type regular-
ization parameter and the additional data in our se-
quent works to deal with multi-parameters simultane-
ous inversion problems in multi-dimensional cases.
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